个人陈述代写

美国毕业论文代写:非粘流机翼剖面-网格和数值方法的影响

美国毕业论文代写:非粘流机翼剖面-网格和数值方法的影响

图3.1显示了不同速度的比较级网。它显示一个小的改变速度时增加的速度。在粗网格的结果是更多的扩散明显在图3所示。2,显示了不同速度的比较级mesh-Zoomed视图与简化。它显示了前翼型表面流速高于入口速度的机翼。基于伯努利定理,顶部表面压力减少,它是负数,这是Fig.3.3所示。在另一方面底部一侧的机翼表面速度小于入口速度和压力是正面的。同时,一个小的后缘分离泡沫出现在6学位面向方面的处理方法(AOA)和流不太可能保持稳定进一步面向方面的处理方法(AOA)并开始分离流场。表3.1显示,Table.3.1比较网与最大速度、压力和CFD模拟的总压强。它清楚地显示了最大静压时聚合网规模约44000加元。

美国毕业论文代写:非粘流机翼剖面-网格和数值方法的影响

Fig.3. 1 shows the Comparison of velocity magnitude for different mesh. It shows a small change in the velocity when increase in velocity. In the coarser mesh the result is more diffused which is shown clearly in Fig.3. 2 which shows Comparison of velocity magnitude for different mesh-Zoomed view with streamlines. It shows the top airfoil surface flow velocity is higher than inlet velocity of the airfoil. Based on Bernoulli’s theorem, the top surface pressure surface decreases and it is negative, which was shown in Fig.3.3. In other hand bottom side of the airfoil surface velocity is less than the inlet velocity, and the pressure is positive. Also, a small separation bubble appears at the trailing edge for 6 degree AOA and the flow is unlikely to remain steady for further AOA and starts separation in the flow field. Table 3.1 shows that Table.3.1 Comparison of Mesh Vs Maximum velocity, Pressure and Total Pressure in CFD Simulation. It clearly shows the maximum static pressure is converged when the mesh size is C approximately 44000.